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Abstract. As a linear superposition of translated and dilated versions of a chosen analyzing wavelet func-
tion, the wavelet transform lends itself to the analysis of underlying multi-scale structure in nonstationary
time series. In this work, we use the discrete wavelet transform (DWT) to investigate scaling and search for
the presence of coherent structures in financial data. Quantitative measurements are given by the DWT
of the original time series and wavelet coefficient variance. We find that variations and correlations in the
transform coefficients are able to indicate the presence of structure and that measurements based on the
DWT allow us to observe scaling directly in the nonstationary time series.

PACS. 05.45.Tp Time series analysis – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion. – 02.90.+p Other topics in mathematical methods in physics.

1 Introduction

Recent work has shown that wavelet analysis [1] provides
a unifying framework for the description of many time
series phenomena in the examination of noise processes,
chaotic signals and coherent structures [2]. Techniques de-
rived from the Fourier decomposition of a given time series
into a linear superposition of cosine functions of infinite
support1 are tools for global analysis and are subject to
stationarity requirements. In comparison, due to the finite
support of the analysis functions, the wavelet transform
allows exploration of local data features directly in non-
stationary data. The discrete wavelet transform (DWT)
utilizes dilated and translated versions of a pre-specified
wavelet function to probe structure on different time-
scales. The self-affine nature of this construction has al-
ready been demonstrated to be a useful tool in studying
fractal signals [3]. In this work, we use the discrete wavelet
transform to obtain a set of wavelet coefficients that repre-
sent time series fluctuations on different time-scales. The
log-variance plot of the coefficients as a function of some
time-scale index delineates data self-affinity. Variations in
this plot and correlations between wavelet coefficients are
used to look for coherent structures. These structures are
located using a partial reconstruction of the time series
on selected time-scales. We examine daily data from the

a e-mail: B.Fleming@hw.ac.uk
1 The support (or support-width) of a function refers to the

length of the interval over which it is non-zero.

Nikkei 225 Stock Average and S&P 500 Composite indices
from 1/1/69 to 12/5/00, as plotted in Figure 1, as repre-
sentative examples.

2 Discrete wavelet analysis

2.1 Multi-resolution decomposition

The discrete wavelet transform is a two-dimensional de-
composition of a time series that is specifically designed to
detect local characteristics. The two-dimensionality yields
time and time-scale information as a result of the compact
support of the analyzing basis functions in both time and
frequency. The DWT decomposes a general function, p(t),
into the form

p(t) =
∑
k

cm0,kφm0,k(t) +
M∑

m≥m0

∑
k

dm,kψm,k(t), (1)

where the coefficients {cm0,k} and {dm,k} represent the
similarity of the function to their respective basis func-
tions φm0,k and ψm,k. The indices m and k indicate the
time-scale and time position of the functions respectively.
The first sum in the equation represents the trend of the
time series and the second, the addition of cycles or detail
about the trend at increasingly smaller time-scales.
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Fig. 1. S&P 500 Composite and Nikkei 225 stock average data from Jan69 to May00.

2.2 Function properties and coefficients

The DWT of a signal is generally expressed by the
equations

cm0,k =
∫
p(t)φm0,k(t)dt, (2)

dm,k =
∫
p(t)ψm,k(t)dt, (3)

and has the special property that the functions ψm,k are
all dilations and translations of a single function, ψ(t),
referred to as the mother wavelet, specifically,

ψm,k = 2m/2ψ(2mt− k). (4)

Similarly, for the so-called scaling function, φ(t), we write
φm,k = 2m/2φ(2mt−k). The functions satisfy the following
conditions,

∫
φ(t)dt = 1 and

∫
ψ(t)dt = 0, the latter of

which ensures the oscillatory nature of the mother wavelet,
although in general we also restrict its compact support.
Additionally, we impose our wavelet function to have N
vanishing moments. A wavelet is said to have N vanishing
moments if∫ +∞

−∞
tnψ(t)dt = 0, n = 0, 1, . . . , N − 1. (5)

This allows the removal of polynomial trends of degree
N − 1 from a given data set.

2.3 Filter bank structure

An efficient implementation of the DWT, referred to as
Mallat’s Pyramid Algorithm allows the discrete wavelet
transform to be executed in a recursive filter bank struc-
ture with O(N) operations. Writing equation (1) in the
form

p(t) = Am0(t) +
M∑

m≥m0

Dm(t), (6)

we obtain an expression for the original time series as a
linear superposition of time series which represent outputs
from a set of orthogonal band-pass filters.

M corresponds to the highest resolution and thus the
smallest time-scales of the analysis, and DM(t) represents
the output of the corresponding band-pass filter. From the
construction of equation (4) we see the inherent dyadic
(i.e. power of two) structure. Consequently, the output of
the filter banks contain periods (i.e. time-scales) of 2− 4
time units, 4− 8, 8− 16, . . . and so forth, the time unit
being days here.

3 Self-affinity and wavelet variance

A random process p(t) is said to be self-affine with param-
eter H if for any a > 0 it obeys the scaling relation

p(t) , a−Hp(at), (7)

where , denotes equality in a statistical sense and H is
commonly called the Hurst exponent of the series. Pro-
cesses with 0 < H < 1 are described as fractional Brow-
nian motions and for −1 < H < 0 we discuss fractional
Gaussian noises. H = 1

2 is the special case of classical
Brownian motion and H = − 1

2 that of Gaussian white
noise. This self-affinity is manifest in the power spectrum,
S(f), of the process in the form of a power law relation-
ship which yields the general descriptive term 1/f process.
More precisely,

S(f) ∝ 1
|f |γ , (8)

and with γ = 2H + 1, we verify that for white noise γ =
2(− 1

2 ) + 1 = 0, imposing a flat spectrum.
Consider a function p(t) as a 1/f process with spectral

component γ and let {dm,k} be the set of coefficients given
by the wavelet transform of p(t) using a wavelet, ψ(t), with
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Fig. 2. Log-variance plots for S&P 500 and Nikkei 225 data.

N vanishing moments. Provided 0 < γ < 2N , we find

V ar(dm,k) ∝ 2−mγ , (9)

where V ar(·) denotes the variance [3]. Hence, plotting
log2(V ar(dm,k)) vs. m yields a straight line of gradient
−γ for the given time series. Classical Brownian motion
has spectral parameter γ = 2 so we obtain a gradient of
−2.0. We adopt a symmlet wavelet with 3 vanishing mo-
ments for our analysis [4]. Deviations in these log-variance
plots have been shown to highlight structure embedded in
noise processes, such as periodicities and solitons [2]. More
specifically, if energy-concentrating features, i.e. coherent
structures, are present at a given scale, that scale will often
correspond to an increase in the variance characteristics.

4 Results

Figure 2 shows the log-variance graphs of the data used
in Figure 1 on time-scales of up to 1 year2. We find in
both cases that the data scales in a similar fashion to
data whose spectra follow a power law, though with fluc-
tuations about the best fit straight line. For the S&P data,
a γ value of 1.8 corresponds to a Hurst exponent of 0.4 in-
dicating a degree of anti-persistence on these time-scales.

The Nikkei data exhibits larger variations about
the best fit straight line with γ = 2.0, or H = 0.5,
corresponding to Brownian motion. We have positive
deviations in variance for m = 1, 2 and 7. m = 7 contains
the highest frequency movements, including noise, and
the reconstruction on that time-scale includes the largest
gains and losses over 2-4 days. m = 1 and 2 correspond to
time-scales of 128-256 days and 64-128 days i.e. approxi-
mately 6 months to 1 year and 3–6 months respectively.
In Figure 3 we reconstruct the time series on these
time-scales, using equation (6), and look at the largest

2 We are restricted to this upper time-scale limit due to the
robustness of the wavelet coefficient variance estimator. We are
currently looking into better estimation techniques.
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Fig. 3. (a) Nikkei data, (b) and (c) partial reconstructions.

amplitude fluctuations which are responsible for the
increase in variance. The dominant recurrent (therefore
coherent) structures in the lead up to the major 1990
turning point are the distinct one year cycles indicated
by the first pair of parallel lines in Figure 3c. In 3b, as we
move through 1990, a repeated six month cycle is present
from the double fall, the second of which is also evident
in 3c at the start of a decreasingly volatile period. These
large amplitude cycles result in deviations from a power
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Fig. 4. (a) Nikkei data, (b) reconstruction and (c) autocorre-
lation.

law spectra model delineated by a linear relationship
in the log-variance plot. A similar scaling structure is
found for the data shown in Figure 4a, preceding the
October 1987 crash, with a positive deviation in the
log-variance plot on the 6 month to 1 year time-scale
(m = 1). A Hurst exponent of 0.6 reflects persistence
in the data. 4b shows the time series reconstruction
on these time-scales and 4c, the autocorrelation of the
corresponding wavelet coefficients. The autocorrelation

function does not exhibit the typical fast decay that we
expect for 1/f processes, indicating some coherence be-
tween structures. From Figure 4b, we observe that the
largest fluctuations on these time-scales occur, firstly, in
the years preceding and through 1973, leading into a re-
cessionary period and, secondly, in an increasingly volatile
number of years preceding the October 1987 crash includ-
ing the first of the three clear aforementioned one year
cycles.

5 Conclusion

Discrete wavelet analysis was used to investigate self-aff-
inity and the possible presence of coherent structures on
time-scales of up to 1 year in samples of Nikkei 225 and
S&P 500 data. The data was found to scale in a simi-
lar fashion to a 1/f process though with deviations about
the best fit straight line in the log-variance plot. An in-
crease in the variance characteristics and correlation be-
tween wavelet coefficients were found to point to large fluc-
tuations, including some cyclic behavior, on time-scales of
between 3 months and 1 year. The large amplitude vari-
ations correspond to volatile periods through 1973, 1987
and post 1990 and account for the deviations from a 1/f
type variance structure.
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